KVE

vector Vector Impedance Antenna analyzer User's Manual

(V20150108 for Kve60C and Kve520A)

1.0 引言

KVE60C/KVE520A 图示天线矢量阻抗分析仪(下文表述为:本仪器),是针对 50 欧姆天馈系统测试的仪器。能提供包含驻波 SWR、阻抗 Z(且能 分离含实部 R 和虚部 X)、以及本地干扰水平 S 的数据。数据形式包括数字,指示条,图形等。

本仪器具有信号源的功能的工作模式。

本仪器使用可拆卸锂电,使用 Micro USB 充电接口。任何一个符合标准的 USB 接口和充电器都可以为其充电。

本仪器使用可户外环境使用的专业显示器,可强光下使用。

本仪器可以输入显示用户自定义的 ID。

1.1 应用范围

本仪器通常用来业余条件下检查和调整天线的谐振,带宽,匹配。

1.2 用户

本仪器需要使用者具备有一定的无线电基本理论知识和实践经验,或者在此类人员的指导下使用。 本仪器使用前需要仔细阅读本说明,正确操作。

1.3 本手册

本手册只是简单表述基本信息。 相关信息可能会有变动,并且不作专门通知。

1.4 严重警告

切勿将本仪器连接到有直流电压或带有静电电荷的同轴线、接头、电路。 在于室外系统连接前,请短路同轴线、接头泄放积累的静电。 当附近有高强度 RF 信号时,一定要检查干扰情况,如果强度过大,请不要使用本仪器。特别是同场测量高增益天线。 本仪器测量接头耐 DC 电压为 2V。

2.0 主要参数规格:

1显示屏:

夏普半反半透 TFT,1600 万色,QVGA 分辨率。外置三菱加硬耐划亚克力保护镜片。

2测量范围:

驻波: 1: 1.00-1: 99.99

阻抗: 0.1 - 999.9 欧姆

电阻: 0.1 - 999.9 欧姆

电抗: 0.1 - 999.9 欧姆

3 频率范围:

60C: 0.5-60MHz

520A: 133-177/195-280/395-520MHz

4 频率稳定度:

60C: <3PPM

520A: <0.5PPM

5 最小频率步进:

60C: 100Hz

520A: 1000Hz

6 输出电平:

60C: 1dbm (at 14MHz)

520A: 3dbm (at 438.500MHz)

7 扫频宽度:

60C: 150KHz/300KHz/600KHz/1.2MHz/2.4MHz/6MHz/12MHz/24MHz/48MHz

520A: 300KHz/1.5MHz/3MHz/6MHz/12MHz/24MHz/42MHz/75MHz (75MHz 仅在 395-520MHz 段有效) 8 扫描步进:

60C: 500Hz/1KHz/2KHz/4KHz/8KHz/20KHz/40KHz/80KHz/160KHz

520A: 1KHz/5KHz/10KHz/20KHz/40KHz/80KHz/140KHz/250KHz (250KHz 仅在 395-520MHz 段有效) 9 电源供应: 3.7V 1800mAH 聚合物锂电,可拆卸

10 充电电源:

Micro USB 标准接头(须保证充电器输出电压是直流 5.0-5.5V,且电流输出能力>500mA)

3

2.1 熟悉本机:

1	RF Connector	9	Power_Key
2	Rotary Encoder	10	TFT- LCD
3	Multi_Switch	11	Buzzer
4	Battery Status	12	Reset_key hole
5	Elspsed Time	13	battery cover plate
6	Personalized ID	14	Hang rope hole
7	Soft-key Switch Labels	15	Charge indicator LED
8	Multi-Key	16	The charging hole

1. 射频连接器, BNC

- 2. 旋转编码器,用于频率输入,标记定位,和其他功能。
- 3. 编码器开关,用于频率输入时调整步幅,和其他应用。
- 4. 电池状态显示器,显示剩余电量,电池不足时,会警告。

5. 开机运行时间

6. 自定义 ID 显示,可以显示用户自定义内容

7. 多功能按键指示栏,显示当前多功能按键的功能。

8. 多功能按键

9. 电源按键,用于开机和关机。

10. 彩色显示屏

11. 操作提示蜂鸣器

12. 系统复位孔

13. 电池盖

14. 保护手绳孔

15. 充电指示灯

16. 充电插孔 Micro Usb

3.0 电源、系统、开关机:

1、充电

本仪器使用可拆卸的 3.7 -V 1800mAH 锂聚合物电池,出厂时机器即有一定电量。使用通用的 Micro-USB 数据线,连接任何标准电脑 USB 插槽(5V 500ma)就可以为该仪器充电,。第一次充电注意要使电池充满电。

在给本仪器充电时,要检查位于充电插孔左侧的状态指示灯。红色 LED 信号表示正常充电,绿色表示充电完成,信号灯闪烁警示充电出现故障(一般是电池或电源问题)。

在充电时,本仪器内置的智能控制器可监控电池状态,并设置最佳的充电模式和充电速度。如果电池低于 2.9V,则充电电路启动涓流充 电模式(50ma 充电电流)充电。当锂电电池电压升至 2.9V 以上时,充电电路进入恒流充电模式(500ma 充电电流)。当锂电池电压达到 4.2V 时,充电电路进入恒压充电模式(4.2V 充电电压,),且充电电流开始减小,当充电电流小至 50ma 时,停止充电,一个充电循环结束。与此 同时电压逐渐降低直至自动关闭,进入待机模式。

如果本仪器闲置着不常使用,需保证每 2-3 个月充一次电。并且在长期闲置前,必须使电池充满电。 重要贴士:在首次开机前,需将电池充满电,以及保证闲置设备后每 2-3 个月为其充电。

2、处理器复位:

6

本仪器的操作系统对大部分的小故障和电磁脉冲具有抗干扰功能,然而万一遇到强干扰造成系统死机的情况下,你可以用签字笔、回形针之类,轻轻按压一次复位孔,使其系统复位。

3、开机和关机:

开机:长按电源键 2-5 秒,听到一阵哔哔声后松开,设备就处于开机状态,进入启动界面。 关机:在开机状态,长按电源键 2-5 秒,听到一阵哔哔声后,电源关闭。 重要贴士:在使用旋转编码器关闭分析仪时必须使设备出于开机画面。

3.1 输入呼号或名称:

您可以通过设置呼号或代码(最多8个字符)自定义设备的开机画面,如何设置请参照以下步骤操作:

- 1、在开机界面,按"系统配置/system"键,进入-系统配置/System-操作界面(图 P-3.1)。
- 2、使用设置选择/Select 按键选择呼号/Callsign 参数设置(选中的选项名称会反显)。(图 P-3.2)。 使用顶部编码开关操作呼号输入:
 - a、按压编码开关循环选择呼号位,选中的位的字符会反显,共有8位字符可输入。
 - b、旋转编码开关可依次选择:""、"/"、"0-9"、"A-Z"等字符。不使用的位可以选择空格字符""字符,将不被显示。
 - c、如果不想使用呼号/Callsign 在开机界面显示的功能,请将呼号字符全部设置为空格即可。
- 3、按退出设置/Exit键退出该菜单界面,返回开机界面。这时候呼号就显示在开机界面了。(图 P-3.3)
- 4、如果不想使用呼号/Callsign 在开机界面显示的功能,请将呼号字符全部设置为空格即可。

-System- 00:14:14	-System- 00:13:45	00:14:28
Device VHF/UHF Antenna Analyzer Licence 20145202E5C9043322463D9 Version REV 8.86 Vcc 3.756V OS KVEOS V3.01 AMP 5.162V Boot times 9 X.mode R+J LANGUAGE ENGLISH BAND.MHz 395-520 Auto OFF ON Callsign BH7KVE Operation Tips: Pls use the dial knob	Device VHF/UHF Antenna Analyzer Licence 20145202E5C9043322463D9 Version REV 8.86 Vcc 3.756V OS KVEOS V3.01 AMP 5.162V Boot times 9 X.mode R+J LANGUAGE ENGLISH BAND.MHz 395-520 Auto OFF ON Callsign BH7KVE Operation Tips: Pls use the dial knob	KVE 520A BH7KVE Vector Impedance Antenna Analyzer BAND: 133-177 / 195-280 / 395-520 Mhz Copyright (C) 2013-2014 bh7kwe 9rouP of D.LY ALL RIGHT RESERVED.
for selection P-3.1 Exit Select BAND	for selection P-3.2 Exit Select BAND	P-3.3

3.2 切换工作频段:

仅在 KVE520A 机型中, 需要选择频段。

- 1. 在开机界面,按"system"键,进入-System-操作界面(图 ID-1)。
- 2. 使用多功能按键 F3 (频段选择/BAND),切换频段。

3.3 其他说明:

- 1、在扫描测量/SCAN 测量界面的右下方有个天线信号强度指示图标。
 - 未进行测试操作时,显示天线感应的干扰场强的情况。测试时,代表测量激励功率输出情况。

2、在 Single 测量界面,有个 S-Antenna 信号强度指示条,这是个粗略的天线感应场强指示。功能同 Scan 测量界面的,天线信号强度指示图标一样。

Single- Fre 14.0000MHz	00:05:17
Swr	A
ImPedance(Z)	в
Resistance(R)	c
Reactance(X)	
S-Antenna	E
Return	RUN

4.0 测量操作

4.1 天线测量操作 1 (扫描模式 SACN):

1、在开始界面,按下 SCAN 扫描测量按键,自动进入-Scan Set-(扫描测量设置)界面(ID1),

a、按下扫描测试带宽选择键(SPAN),选择合适的 SACN 测量带宽。

b、旋转编码电位器(可以通过按压编码电位器顶部开关,循环选择输入位,底部有黄色输入位指示标记)输入中心频率(ID2),

c、按下 SCAN 扫描测试键,执行扫描操作。

在进行扫描测试中,为了保证测量的准确性能,每个频点会做极短的停留,一个扫描周期(300个采集点)的时间大概是 2-3 秒。

2、测量结束后,自动会进入-Present-(结果分析)界面 ID3 ,在此界面下,可以进行三种操作: a、按 "Graph"图示模式键,切换扫描结果的曲 线显示方式,除 SWR 驻波曲线外,还有 Z 曲线, R 曲线, X 曲线。

b、旋转编码器移动光标,查看扫描曲线上每个扫描频点上的的具体测量结果参数。

c、在移动光标查看扫描结果数据的过程中,可以按"▼RUN"键,从当前光标处重新扫描,如果需要改变新扫描的频宽,可以通过按"Scan Set" 键进入测量设置界面,这时光标点的频率参数也会自动带入测量界面,设置后在-ScanSet-(扫描设置)界面按"SCAN"键扫描即可。),也可以 返回-Present-(扫描结果查看,有些版本标记为-Result-)界面操作。

4.2 测量数据保存与调出:

每次关机前,会自动保存最后一组扫描数据(V/U 段各一组)。如果下次开机后没有扫描操作,这组数据不会被覆盖,依然有效。并且 V/U 段的数据独立存储,互相不影响。具体操作如下:每次重新开机后,

A、 按"Scan"(扫描测量)功能选择键,进入-Scan Set-(扫描测量设置)界面,

B、按"Result" (结果分析)界面选择键,进入-Result-(结果分析)界面,

C、按"Graph"(扫描结果曲线)图示模式选择键,就会自动调出存储的扫描数据。

4.3 天线测量操作 2 (单频测量模式 Single):

在开始界面:按下"Single"单频模式测量按键,进入-Single-(单频测量模式)界面。

Sur -Single- Fre 14.0000MH	z 00:05:17
SWI .	A
Impedance(Z)	В
Resistance(R)	c
Reactance(X)	
S-Antenna	E
Return	RUN

a、旋转编码电位器输入中心频率,具体操作参考上面"SCAN"扫描测量模式说明。

b、按下测试和暂停测试键"RUN/Stop",启动和停止测试。

单频模式提供了一个单一频率上的阻抗测量,被测频点的基本参数显示在屏幕上。并且以指示条和数字的形式在屏幕上快速显示。

这个测试是可以连续进行的,除非你是按停止按键。

此模式下,本装置可以作为一个精确的信号发生器使用,信号在测试端口输出。

5.0 误差和故障处理

5.1 校准平面误差:

校准平面是基准源电路的关键,所有测量数据呈现出最大的精准度 (Gain Reference =0dB and Phase Shift = 0 degrees)。本仪器跟一般手持式显示设备一样,校正平面被固定在射频连接器上。只要安装好传输线,分析仪将呈现校准后的波形和错误时的波形。

驻波比参数出现误差主要是因为电缆受损。一般情况这种问题都不大,在无线电台和分析仪上你都可以看到 SWR 在减少。如果你旨在记录 驻波比曲线图,需要用短引出线将分析仪直接连接到馈电点,以尽量减少测量误差。

由于电路会产生相位旋转,校准平面误差对测量阻抗具有重要意义。在实际操作时,阻抗读数可能会大幅摆动,这是电缆长度问题或者电缆 的阻抗不匹配造成的。理想的天馈系统调整结果,既要天线谐振(即电抗为0或者较低的值),又要匹配的好(就是Z接近50欧)。天线测量和 调整,需关注电抗和驻波测试结果,并互相验证、平衡。为了获取最有意义的阻抗数据,往往要用最短的电缆直接将分析仪连接到被测设备(DUT)。

5.2 电抗信号测向模糊:

大多数手持式分析仪直接计算电抗签收复杂的阻抗(Z=Rs ±j)的处理能力不高,本仪器也是如此。

5.3 电故障检测:

本仪器内部无操作人员可维修的部件,未经经授权请不要拆开设备后壳,否则无法保修。如果设备无法正常工作,请在联系分销商售后前,详细阅读下面的维修指南。

- 1、分析仪无法开机:
- * 有可能电池没电了,连接充电器,红色指示灯亮起表示正在充电 小时后再次检查单位。
- 2、分析仪功能显示不正常或不稳定:
- * 重新启动设备(见3.02章重启指令)。
- 3、测试数据过高或 SWR 间歇性变高:
- * 检查分析仪的 BNC 插口是否接好,或天线连接器 和同轴电缆的的情况。

如果问题无法解决,请在联系销售商售后,获得相关协助。